

Analysis of ν_{μ} CC Events

R. Rameika October 5,1999

Outline

- Motivation
- Event Definition
- Event Selection
- Measurements
- Results
- Conclusion

Motivation

Analysis of the muon charged current events is important for several reasons:

- 1) We use the muon events to determine the neutrino energy spectrum.
- 2) We must demonstrate that our event selection and reconstruction programs are working properly; the muon events provide a relatively high statistics, simple topology sample of events with which to do this.
- 3) We can locate potentially interesting events by studying events with muons that don't link to the primary emulsion vertex.

Event Definition

Charged Current neutrino events can be defined by the following **measured** quantities:

neutrino direction : p_{v}

visible energy: E_{vis}

lepton momentum : \vec{p}_1

neutrino type : from sign of p_1

and from the following calculated quantities:

angle between the lepton and the jet : $\Delta \phi$ lepton transverse momentum : $p_{\mathrm{T}\,lep}$

y-distribution (from E_{vis}): 1 - E_{lep}/E_{vis}

Event Selection

Emulsion

- Pass 1 Data : Located vertex is GIVEN
- Pass 2 Data:
 - Unique High Multiplicity Vertex is selected as the primary $\Rightarrow \geq 4$ tracks from primary
 - Select vertex with "best" number of matches to fiber lines
- For each event I verify visually that the vertex is "correct" by checking the matching of emulsion to spectrometer tracks or lines.

Spectrometer

- Select events which have at least one final track with Σ muid ≥ 4

Matching

 "match" the muon(s) to the emulsion track which is closest in u and v

Measurements

- For each event I will determine the following quantities:
 - $-\overrightarrow{p}_{\mu}$:magnitude and sign (spectrometer)
- muon track at the primary vertex (emulsion)
 - Resolution
- \rightarrow $\Delta\Phi$ in the plan transverse to \mathbf{p}_{v}
 - $-p_{\text{Tlep}}$
 - $E_{vis} = E_{lep} + \sum E_{had} + \sum E_{em}$
 - $-y_{vis}$

Results : $\sigma_u \sigma_v$

Results : $\Delta \phi$

Conclusion

Events:

sample will be increased by ~20% with events where the vertex has yet to be visually verified but are likely to be OK (next week); A few events in the present pample have poor resolution and these need to be studied in more detail and either fixed or eliminated.

Calculations:

 $p_{\mathrm Tlep}$ is easy and will be included; $\mathrm{E_{vis}}$ requires more effort and I will begin this asap.